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Introduction

¢+ The role of computational fluid dynamics (CED)
and optimization through CFD
¢+ Simulation data helps to focus experiments.
¢+ Reduce wind tunnel expenses

» The promise of genetic algorithm optimization
» “patural selection” in a “population” of designs

. Selection takes care of design process = little
‘knowledge required

¢ Multiple designs in a population = parallel comiptitine




Introduction

+ Baseline design for this GA optimization
¢+ The Large-scale Inlet Mode Transition (L/IMX) inlet
¢+ The need for transitional inlets on high-Mach aircraift

ramp

turbojet flow path

turbojet

S scramjet flow path




Problem Definition

+ Optimize inlet’s contribution to the efficiency: of
the engine

+ Significance of total pressure for eff|C|encv

¢ a.k.a stagnation pressure

¢+ Decreases with entropy generation

¢ Reflects flow’s ability to do work

- Tlotal pressure recovery = Py ot / Py entrance

¢ Concerns: -

v The shock train = shock losses

¢ Boundary layers = entropy,, more snock|loss




Objective

“Implement a GA to design an optimum geometry for the

turbojet flow path of a hypersonic jet engine inlet at Machi 4,
using the L/IMX inlet as a baseline.”

Mach 4 = cutoff for turbojet
Optimum = highest possible total pressure recovery.

Non-uniform flow at exit = use average total pressure _
recovery over cross-section .y
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Approach

+ Define and implement key components of the GA
¢+ Alleles
¢+ Chromosomes
¢+ Fitness
¢+ Initialization
¢+ Parent selection
Crossover
v  Mutation
v Elitism
¢+ Design constrai
Validate the GA through tests
Lay out now the GA Interacts with auxiliary plreg[ramsydate
fijes, and scripts



Approach: Alleles
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* Definition: design parameter values that defineam =+
individual =7

¢+ 25 total, 3 types: ¥ i
¢+ Coordinates of key points along the inlet |

= ]

¢+ Bias values: which way does the wall bend? e |
¢+ Tightness values: how sharply does it bend?

approximately uniform flow §
cowl lip

[
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) bend in ramp
ramp lip




Approach: Chromosomes

¢+ Definition: a list of an individual’s alleles

+ Alleles are listen in order of type:
X-coordinate of cowl lip

Y-coordinates of all key points (x fixed)
Bias values

» Tightness values

<&



Approach: Initialization

+ Definition: the generation of an initial population

¢+ Initial population generator (IPG) separate from
GA 3

¢+ Individuals distributed randomly in design space

¢+ Uniform probability for all possibilities, each allele
/IMX design always included



<&

<&

A 2

Approach: Fitness

Definition: the cross-sectional average total
pressure recovery

CFD output (density, velocity) - total pressure
CFED output is nondimensional |

Accommodating non-uniform exit flow
+ CFDresults only at discrete grid points
¢+ Riemann sum, divide by area = p; qyi¢ » Py,
¢+ Total PresSSUre recovery = Ot,, exit / U@it,, entrance

entrance




Approach: Parent Selection

Definition: selection of individuals to pass on
their alleles to the next generation

Check: 2 unique parents for crossover
Higher fithness > more likely to be chosen

Roulette Wheel

¢+ Individual’s “wedge on the wheel” proportional to
fitnes:

¢+ “roulette ball” stops at a random point around thewheel




Approach: Crossover

¢+ Definition: 2 parent chromosomes swap or blend alleles to
form 2 children

¢+ Occurs with 70% probability

¢+ If crossover, then for each allele, numbered 1-25:

¢+ 1/3 chance alleles remain unchanged

¢+ 1/3 chance alleles swapped between parents
8 chance blended crossover

Blended crossover

+ Children’s alleles = randomly weighted averages, of parenits
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Approach: Mutation

+ Definition: a random allele changes its value

¢+ Occurs for every new individual except th one
copied through elitism

¢+ One allele chosen at random per individua
+ Allele value changes to any value in design space

niform probability of all possibilities
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Approach: Elitism

Definition: automatically copy the individual with
the highest fitness is into the nest generation
The only exception to crossover and mutation

The best fithess cannot decrease over
generations.

Speeds convergence
¢+ Favors high fitness
¢ May converge too soon for small populations




Approach: Design Constraints

¢+ The inlet walls cannot intersect
¢+ The cowl lip must be upstream of the shock off
the ramp

¢+ Retry generating the individual if it violates a
constraint
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Approach: Validation

¢+ Use dummy fitness function to test GA
performance

¢+ Dummy fitness function:

f(x) = | cos((x-400)/25) * e-I(x-400)/400] |
¢+ X =sum of allele values
Resulting changes for improvement:
¢+ Don't have all designs on one side of optimuim
¢+ Give initiall population uniform probability: across desigm

space

¢ Give mutation uniform: prelalility aciess dEesignrsSpace
Alncrease mutation ter 100% propanility eRoceliEnce




Fitness of Best Individual in Each Generation, 10 individuals per generation

dividual,on a0to 1 scale
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Fitness of Best Individual in each Generation, 10 individuals per generation
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Approach: Validation

. . .
¢+ Use L/IMX inlet to test actual fithess calculations

+ After debugging, total pressure recovery = 0.4377

¢+ Resulting changes for improvement:

¢+ gridline distribution function from grid generator ->
average by area 3

¢ Read from binary result file, not ASCII




Approach: Analysis Tools

¢+ Overflow
+ CFD software, calculates flow behavior:
¢ Input: Plot3D grid, boundary conditions;

“restart” options 2

Output: density, velocity vectors at

gridline intersections

SBoundary conditions: inviscid

510 w&a@l‘nnhm@ Inlet, viscid inletwallls

¢




Approach: Analysis Tools

¢+ Grid generation
¢+ GA outputs 2D grid file

“makegrid” script converts to no mulnullly
3D file for Overflow

» Grid concentration near walls, ramp
corners, cowl lig




Approach: Analysis Tool:
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¢+ Visualizes grid files,
Overflow result files

¢ Color codes
according to flow
properties

temperature, Mach,

pressure, ete.
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Approach: Program Interactior

¢+ Programs and files across ¢+ Columbia stores

2 machines executables
+ Columbia, NASA ¢+ GA
supercomputer at Ames v IPG

Lou, NASA mass storage ¢+ Overflow
machine ¢ Scripts

Lou stores archivies
5 to beai ) ¢ grid files
' e ¢ éﬁut’r‘@mmcm@mmce@
v GA for eachigeneration o Bt

v moves filesias needed. + best scores

¢ Batech script calls:




Results

¢ Functional Initial Population Generator (IPG)
+ Well distributed across design space
¢+ Avoids constraint violations

¢ Functional fithess calculation

¢+ Functional random number generator
¢ Does not repeat between runs of the program
¢ Does not repeat when called repeatedly in progjram

Functional GA
¢ Fitness improves: fromoaseline and never backsiides
v Perfiormance improves withilarger populationsiotrco/mputie

ulme limited for this project
VAVOESEcoStralnt Violations
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Results

¢+ Improved design from small-scale run
+ Total pressure recovery of baseline = 0.4377
¢+ Improved total pressure recovery = 0.4450

PresStag
1.683¢+002
1.265¢+002
8.460e+001
4.273e+001

8.670e-001




Future Work

¢+ Improved compatibility with Columbia

¢+ Run large-population, many-generation cases
¢+ Possibly multiple days each to run on Columbia:
¢+ Generations of >100 individuals

¢+ Thoroughly explore design space

weak GA to improve efficiency
+ Alternate parent selection methods
+ Crossover, mutation probabilities

v Alternate crossover, mutation setu|o
iWealk constraints, coolrainatine witaRE/IIvIyE




Conclusions

Pros of GA Approach Cons of GA Approach

¢+ GAs explore parts of ¢+ Requires great (expensive)
design space far from computational power -
baseline + Requires extensive =
o

¢+ Multiple designs to test -
Parallel (efficient)
computing

¢+ adaptable

computing time
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Conclusions
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